
DESIGN AND PERFORMANCE OF SSRL BEAM POSITION 
ELECTRONICS* 

J. Sebek#, D. Martin, T. Straumann, J. Wachter, SSRL/SLAC, Menlo Park, CA 94025, U.S.A.

Abstract 
SSRL designed and built beam position electronics for 

its SPEAR storage ring.  We designed the electronics, 
using digital receiver technology, for highly accurate turn 
by turn measurements of both the position and arrival 
time of the beam, allowing us to use this system to 
measure the betatron and synchrotron tunes of the beam.  
The dynamic range of the system allows us to measure 
the properties of the beam at currents ranging from those 
of single bunch injection to those of the full SPEAR 
stored beam.  This paper discusses the architecture of the 
electronics, presents their performance specifications, and 
shows a range of applications of this system for 
accelerator physics experiments. 

SPEAR PARAMETERS 
SPEAR is a 3 GeV electron storage ring used for 

synchrotron radiation.  The operational beam current is 
now 200 mA; the ring will run at 500 mA after all of the 
beamline optics have been commissioned.  The beam 
emittance is 10 nm, the vertical beam size is 30 μm, and 
the bunch length is 5 mm.  The radio frequency (RF) of 
the SPEAR klystron is 476.316 MHz and the ring 
circumference is 234.3 meters; the harmonic number of 
SPEAR is 372 and its revolution frequency is 1.28 MHz. 

ORBIT FEEDBACK BPM ELECTRONICS 
We use a modified version of the Bergoz MX-BPM 

processor [1] to measure the beam position monitor 
(BPM) signals for our orbit feedback system.  We use 60 
BPM processors to monitor the beam position and 60 
steering magnets to correct the orbit.  Our feedback 
algorithm updates at a rate of approximately 4 kHz.  Our 
target orbit stability is 3 μm in a 1 Hz bandwidth, 10% of 
the nominal vertical beam size.  Our orbit feedback 
system achieves a stability of a few hundred nm, an order 
of magnitude better than our requirements. 

SINGLE TURN BPM ELECTRONICS 
We also wanted a high performance BPM processor 

that was optimized for machine physics applications.  
Therefore it needed to produce highly accurate turn by 
turn data of the beam from which we could extract the 
dynamics of the machine.  We have 18 of these 
electronics, one for each sector of the ring. 

Machine physics use requires the electronics to work 
over a large dynamic range, from injected beam to stored 
beam at full current and it needs to work for all potential 

fill patterns, ranging from the standard fill pattern, when 
almost all buckets are full, to single bunch studies.  In 
particular we need to be able to use this processor to 
measure the betatron and synchrotron oscillations of the 
beam, both when we are driving the beam and the 
oscillations are strong, as well as when the beam is quiet. 

BEAM SPECTRUM 

Ideal Bunch 
  In order to motivate our system architecture, we first 
briefly review the properties of a relativistic beam in a 
storage ring.  The ideal beam circles the ring at the 
revolution period T.  If the bunch were ultra-relativistic, a 
point particle, and the BPM button had infinite 
bandwidth, the signal would be a series of delta functions ݅(ݐ) = ෍ ݐ)ߜܳ − ݊ܶ),ஶ

௡ୀିஶ  

where Q is the bunch charge.  Because of its periodic 
nature the current can be expressed in a Fourier series ݅(ݐ) = ෍ ܳ݁௜௞ఠబ௧,ஶ

௞ୀିஶ  

where ߱଴ =  showing that the spectrum consists ,ܶ/ߨ2
only of the harmonics of the revolution frequency.  Even 
though there are an infinite number of harmonics, they all 
carry the same information about the bunch.  Finite size 
of the bunch and finite bandwidth of the pickup give Q a 
dependence on the frequency ω. 

The ring may have up to h bunches, where h is the 
harmonic number of the ring.  The beam spectrum is still 
composed of the harmonics of ω0, but now the amplitude 
of the various harmonics depends on the fill pattern of the 
ring.  For example, if h is even, and every other bunch is 
equally filled, only the coefficients of the even harmonics 
are non-zero; one cannot distinguish between this 
situation and one in which the ring is half as large (with 
twice the revolution frequency) but in which every bunch 
is filled.  But even though there are an infinite number of 
harmonics, the number of independent terms is finite.  In 
fact, since there are h bunches, there are only h 
independent coefficients Qk.  The coefficient 
corresponding to the klystron RF frequency ωRF, and all 
of its multiples, is the same as the DC coefficient.  In 
order to obtain a signal independent of bunch pattern, one 
needs to process the signal at a harmonic of ωRF. 

Dynamic Bunch 
We can see what happens to a dynamic bunch by 

making a slowly varying approximation to the Fourier 
expansion.  A beam executing transverse motion about its 
nominal trajectory will have a time-varying amplitude; a 
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beam executing longitudinal motion will have a time-
varying phase.  Therefore our Fourier expansion for a 
dynamic beam is ݅(ݐ) = ෍ ܳ௞(ݐ)݁௜ఏೖ(௧)ஶ

௞ୀିஶ  

where ߠ௞(ݐ) = ݇߱଴( ଴ܶ +  ( (ݐ)߬
and ߬(ݐ)is the deviation in arrival time from the nominal 
particle.  Note that ߬(ݐ) ≪ ଴ܶ.  We can therefore find a 
mode of the beam motion by measuring the slowly 
varying amplitude and phase of the beam.  Betatron 
oscillations are characterized as sinusoidal variations of ܳ௞(ݐ), corresponding to amplitude modulation, and 
synchrotron oscillations are sinusoidal variations of ߬(ݐ), 
corresponding to phase modulation. 

A beam with n bunches has n degrees of freedom.  
Therefore, in order to measure all possible motions of the 
beam, one needs to measure either n bunches in the time 
domain or n harmonics (modes) in the frequency domain.  
These are the methods used in feedback systems.  
However, one can investigate the dynamics of a system 
by driving one mode, the common mode (݊ = 0) in 
which all bunches have the same motion, and observing 
the beam response.  The harmonics of ωRF correspond to 
this common mode. 

SIGNAL PROCESSING 
We now know that we can obtain the information that 

we want by extracting the information at ωRF and 
measuring its slowly varying amplitude and phase.  We 
will digitize our data, resulting in a stream of digital data 
to process.  We now describe the signal processing 
algorithm that we use on this data to achieve our goal. 

Since we deal with a finite number of samples, our 
processing involves a discrete filtering process.  With the 
appropriate choice of frequencies, and the appropriate 
choice of our hardware architecture, we will see that this 
filtering process is accomplished with a discrete Fourier 
transform (DFT). 

In general, it is very difficult to obtain the exact 
information about one frequency from a DFT.  This is 
because a DFT has only finite resolution.  It samples a 
finite section of a waveform at N discrete, usually equally 
spaced, times TS.  The DFT assumes that this section of 
length NTS repeats periodically. Therefore, since even a 
pure sinusoid, in general, does not have an integral 
number of periods during these N samples, the DFT does 
not interpret this signal as a sinusoid, but rather as a 
concatenation of identical sinusoidal segments.  If the 
sinusoid is not continuous in amplitude and slope, a cusp 
arises in this infinite waveform.  The DFT interprets this 
cusp as higher frequencies that alias into a measured 
frequency. 

Only for a select set of problems can one construct the 
system to avoid these problems and exactly measure the 
frequency of interest.  The beam signal from a storage 
ring belongs to this set.  As seen above, all of the 
frequencies of interest are multiples of the revolution 

harmonic ω0.  If we sample for a period of time that is 
exactly one revolution period, ܰ ௌܶ = ଴ܶ, then all of the 
revolution harmonics have an integral number of 
wavelengths during this period.  The equally spaced 
revolution harmonics are the orthogonal basis vectors of 
the DFT. 

In the frequency domain, the response of the DFT is a 
series of sinc functions centered on the revolution 
harmonics.  The sinc amplitudes are unity at their central 
harmonics and zero at the other harmonics.  The DFT 
separates out the different revolution harmonics to the 
arithmetic precision of the digital processor. 

The DFT produces a complex amplitude ܳ௞(ݐ)݁௜௞ఠబఛ(௧) 
for each harmonic during each revolution period; the real 
part is the in-phase (I) signal component and the 
imaginary part is the quadrature (Q) component.  On each 
revolution we use I and Q to calculate the magnitude |ܳ௞(ݐ)| = ඥܫଶ + ܳଶ 
and the phase kω଴τ(t) = tanିଵ ܫܳ  

of the revolution harmonic. 

HARDWARE CONSIDERATIONS 

Timing 
In order to implement our system, we needed to 

assemble a synchronous timing system that could support 
the required timing infrastructure.  Our system clock, fRF, 
comes from a PTS-500 programmable frequency source 
[2].  In addition to its low noise specifications, the PTS-
500 is phase continuous when its frequency is changed.  
We need this property since fRF is part of our orbit 
feedback system, we change it to correct for the diurnal 
dispersion component of our orbit. 

We then specified a frequency distribution chassis [3] 
that generates from fRF all of our synchronous system 
clocks.  For the purposes of this article, the two 
frequencies of interest are a local oscillator (LO) used in 
the down-converter of the BPM and a digitizer clock.  
The LO frequency, fLO, is exactly 359 times the revolution 
frequency f0, so that our intermediate frequency (IF) will 
be exactly 13f0.  The system clock is 50f0.  We use 50 
samples per revolution to measure exactly 13 periods of 
fIF. 

(We also note that the sampling of our orbit feedback 
BPM electronics is also synchronous with fRF.  We sample 
each of the multiplexed BPM buttons for exactly 80T0; a 
complete module of four buttons is sampled every 320T0 
which is almost exactly 250 µs.  This is also the rate at 
which our orbit feedback system calculates corrections 
and at which the steering magnets update their 
corrections.) 

BPM Electronics Design 
We designed, specified, and procured our hardware for 

this system before the December, 2003 commissioning of 



SPEAR3.  At that time, 14 bit, 65 MSPS digitizers were 
at the leading edge of commercial digitizers.  The easiest 
way to implement our DFT algorithm was to use a 
commercially available digital receiver chip (subsequent 
improvements in technology may now make the preferred 
filter element an FPGA).  We specified and purchased a 
digital receiver (DR) board [4] and designed our own RF-
IF down converter. 

The DR board supports eight channels of input, enough 
for two BPM modules.  Two programmable DR chips are 
devoted to each channel.  There is also on-board memory 
that holds 128k samples for each channel; this 
corresponds to approximately 100 ms of data capture, 
much longer than the time of any beam phenomenon. 

 RF-IF Converter 
Although the digitizers used in our DR board are 

capable of direct RF sampling, there are many technical 
advantages to first down-converting the RF signal to an 
IF. 

First, although the performance of the digitizer is still 
good at fRF, the performance is even better at lower 
frequencies (our ூ݂ி ≅ 16.645 MHz).  Second, since there 
are technical limitations on the quality factors of 
inexpensive band-pass filters, it is easier to construct 
analog band-pass filters of the appropriate width at fIF 
than at fRF.  Finally, the accuracy of the phase 
measurement depends on the relative jitter of each clock 
sample as measured in radians of the frequency to be 
measured.  By decreasing the frequency we process by a 
factor of almost 30, we improve the phase accuracy of our 
measurements by more than an order of magnitude. 

Analog Signal Processing 
Although we finally digitally process our signal, we 

still need an analog signal processing stage to optimize 
the system performance.  We use a dielectric resonator 
band-pass filter at fRF [5] to limit the peak voltage into our 
electronics.  Such commercial filters can achieve about a 
1% bandwidth, so the length of the impulse response is 
shorter than desired.  These filters are periodic structures, 
so although they reject very well frequencies near their 
center frequency fC, they also pass higher harmonics of fC.  
To reject these frequencies, we added a coaxial 600 MHz 
low pass filter upstream of the electronics. 

We performed our desired filtering at the IF, where we 
built a Gaussian response filter with a bandwidth of 2 
MHz.  The response and bandwidth were chosen so that 
an impulse response of a single bunch would provide 
signal over the entire 50 samples of a single period T0 yet 
decay without ringing before the next period.  
Lengthening the impulse response also reduces the peak 
amplitude seen by the digitizer. 

Figure 1:  Two turns of IF samples 

We used several stages of amplification.  The gain 
block in the RF stage was chosen for its low noise figure; 
the one in the IF stage was chosen for its low distortion.  
The RF gain block is used to amplify the signal for low 
beam current applications.  Both the RF gain block and 
the IF filter are switchable so that the electronics can be 
optimized for different applications. 

Calibration 
We chose to calibrate our system using a constant 

calibration tone.  We have combiners [6] located inside of 
our ring, near the BPM modules, and there combine the 
calibration tone with the signals from the beam.  The 
continuous signal allows us to avoid switches, so that we 
do not have to skip data or compensate for switching 
transients. 

Our calibration frequency is chosen to be 1/2f0 below 
fRF, well within the bandwidth of our analog stages.  For 
technical reasons, it is generated by a second frequency 
synthesizer that is locked to the master synthesizer.  (For 
stability reasons, the tunes in a light source are always far 
away from the half-integer.)  In this mode, we have both 
DR chips run on each channel and instead of producing a 
measurement each revolution, we output data every 
second turn.  This allows the two signals to be orthogonal 
to each other in the two DRs. 

The calibration is only used during normal operation of 
the BPM electronics with stored beam.  It is turned off 
during machine physics studies. 

RESULTS 

Accuracy 
We first measure the accuracy of the BPM electronics 

by examining the data for nominal user beam with a 
standard fill.  Figure 1 shows 100 samples, two complete 
turns of data; the periodicity of the system is evident. 
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Figure 2: Turn by turn data for one button. 

The data in Figure 2 is taken on a vacuum chamber 
with a 17 mm half height.  The standard deviation 
measured for this 100 ms of data gives an accuracy of 
about 7 µm per turn (781 ns). 

 

Figure 3: First 1 ms of turn by turn data. 

However the standard deviation includes contributions 
from beam motion, including synchrotron oscillations (in 
dispersive regions) driven by transients in the klystron 
high voltage power supply.  If one instead measures σ 
from the noise on the peaks of the synchrotron 
oscillations in Figure 3, the resolution of each button, 
before the position is calculated, is seen to be 
approximately 1.4 µm per turn on a 34 mm high chamber. 

We calculate the beam position using the standard 
difference over sum calculation using the four buttons.  
Figure 4, which shows the first ms of data shows that this 
calculation improves the sensitivity of the measurement. 

The phase measurement is also very accurate.  Figure 5 
shows that the standard deviation of the phase over 100 
ms corresponds to 1.4 ps at ωRF.  However, estimating the 
σ from the noise at the top of the oscillations shows that 
our accuracy is better than 100 fs.  Note that, as expected, 
the energy oscillations in Figure 4 are in quadrature with 
the phase oscillations in Figure 5. 

Spectral Purity 
The spectral resolution of the horizontal beam position 

measurement is displayed by the Fourier transform of the 
turn by turn data displayed in Figure 5.  The noise floor of 
the measurement is approximately 115 dB below the 
carrier, with spurs about 20 dB above this floor.  All of 
the tunes for a normal, quiet beam are clearly visible.  
Again we see that the synchrotron tune is visible in the 
horizontal beam spectrum; this is due to the BPM location 
in a dispersive section of the ring. 
 

Figure 4: First 1 ms of horizontal position. 

Figure 5:  First 1 ms of bunch phase. 

The horizontal tune line, only slightly visible in the 
dense spectrum in Figure 6, is about 25dB above the noise 
floor of the electronics, as seen in Figure 7.  The vertical 
and synchrotron tune lines are also very visible from the 
spectra. 

Low Current Injection Studies 
Finally we look at data from low current injection 

studies.  A single bunch of current is injected into SPEAR 
every 100 ms.  In order to optimize injection, one needs to 
determine that the phase delay between the injector and 
SPEAR is correct and that the energy of the injected beam 
matches the SPEAR energy [7]. 
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Figure 6:  Spectrum of horizontal position. 

Figure 7:  Horizontal tune. 

The injected current is only 50 µA per pulse, four 
orders of magnitude lower than the maximum current in 
the ring.  One cannot measure this low current in the 
presence of a stored beam, but the injected beam can be 
stored and then kicked out before the next injection cycle.  
At these currents, the digitizer is at its bit resolution, but 
the signal is still well above the noise floor.  By averaging 
multiple injections, in this case sixteen cycles were 
averaged, the effective resolution of the digitizer 
increases and the desired signals can be accurately 
measured. 

Figures 8a and 8b show the horizontal position and 
phase, respectively of a mis-timed injected beam.  The 
position signal executes expected betatron oscillations 
due to the injection kickers.  Both signals execute 
synchrotron oscillations.  Since the position signal is sine-
like and the phase signal is cosine-like, the injected beam 
has the proper energy, but the incorrect phase.  Proper 
tuning of the injector phase reduces the measured phase 
oscillation to ±0.1 radians. 

 

Figure 8a:  Horizontal position of mis-timed injected 
beam. 

Figure 8b:  Phase of mis-timed injected beam. 
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